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Abstract. Brazil’s CH4 emissions over the period 2010–2018 were derived for the three main sectors of activity: anthro-

pogenic, wetland and biomass burning. Our inverse modelling estimates were derived from GOSAT satellite measurements

of XCH4 combined with surface data from Ragged Point, Barbados and the high-resolution regional atmospheric trans-

port model NAME. We find that Brazil’s mean emissions over 2010–2018 are 33.6± 3.6Tgyr−1, which are comprised of

19.0± 2.6Tgyr−1 from anthropogenic (primarily related to agriculture and waste), 13.0± 1.9Tgyr−1 from wetlands and5

1.7± 0.3Tgyr−1 from biomass burning sources. In addition, between the 2011–2013 and 2014–2018 periods, Brazil’s mean

emissions rose by 6.9± 5.3Tgyr−1 and this increase may have contributed to the accelerated global methane growth rate

observed during the latter period. We find that wetland emissions from the Western Amazon increased during the start of

the 2015–16 El Niño by 3.7± 2.7Tgyr−1 and this is likely driven by increased surface temperatures. We also find that our

estimates of anthropogenic emissions are consistent with those reported by Brazil to the United Framework Convention on10

Climate Change. We show that satellite data is beneficial for constraining national-scale CH4 emissions, and, through a series

of sensitivity studies and validation experiments using data not assimilated in the inversion, we demonstrate that calibrated

ground-based data are important to include alongside satellite data in a regional inversion, and that inversions must account for

any offsets between the two data streams and their representations by models.
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1 Introduction

Methane (CH4) is the second most important anthropogenic greenhouse gas behind carbon dioxide due to its radiative prop-

erties and atmospheric abundance (Ciais et al., 2013). After a brief plateau period around the turn of the century (Cunnold,

2002; Dlugokencky et al., 2003), CH4 mole fractions began rising again globally after 2007 (Rigby et al., 2008; Dlugokencky

et al., 2009; Frankenberg et al., 2011; Nisbet et al., 2016) with some of the strongest growth rates occurring from 2014 onward20

(Nisbet et al., 2019). This increase in CH4 growth rate was accompanied by a shift in the δ13C-CH4 isotopic ratios to more

negative values, suggesting a change in the global makeup of sources and/or sinks. The drivers responsible for this shift are

presently not well-understood, and proposals include increases from tropical wetlands or agriculture, decreases in biomass

burning, changes in fossil fuel emissions or in the hydroxyl radical sink (e.g. Monteil et al. 2011; Schaefer et al. 2016; Schwi-

etzke et al. 2016; Nisbet et al. 2016; Rigby et al. 2017; Worden et al. 2017; McNorton et al. 2018; Turner et al. 2019; Nisbet25

et al. 2019). Quantifying the CH4 budget and understanding how major sources and sinks have evolved is key to designing

emission pathways that limit global warming due to the importance of CH4 in meeting global climate targets (Ganesan et al.,

2019; Nisbet et al., 2019, 2020).

The Paris Agreement pledges to limit warming to less than 2◦C with an aspiration for less than 1.5◦C warming from

pre-industrial levels (UNFCCC, 2015). The mitigation action taken by each country is dependent on their own Nationally30

Determined Contributions and accounting for national emissions will occur through inventory or “bottom-up” methods. To

assess whether these self-determined targets are being met, independent estimates can be derived using “top-down” strategies

that use atmospheric measurements to quantify sector-level emissions estimates at near real-time and at high-resolution (e.g.

Ganesan et al., 2019). Using both top-down and bottom-up methods together for national-scale greenhouse gas estimation is

considered to be best practice (Calvo Buendia et al., 2019) and allows for the greatest process-level understanding of changes35

in the atmosphere.

Brazil is thought to be a major contributor to global CH4 emissions due to its variety of natural and human-made sources.

Anthropogenic emissions arise from agriculture, waste and biomass burning (Ministry of Foreign Affairs et al., 2019). Brazil’s

2018 Biennial Update Report to the United Framework Convention on Climate Change (UNFCCC) states that 17.6± 4.0Tg

of CH4 was emitted from anthropogenic sources in 2015. The majority of these emissions were from agricultural processes40

(70% from enteric fermentation, manure management and crop residue burning) with the remainder coming from waste (16%),

energy (4%) and land-use change (6%) (Ministry of Foreign Affairs et al., 2019).

Around 60% of the Amazon basin and 80% of the Pantanal wetland region (Ministry of Science and Innovation, 2016;

Schulz et al., 2019) exist within Brazil in the northern and central-western regions of the country, respectively. The primary

areas of agricultural activity are in central and southern provinces and include cattle ranching and sugar cane production, while45

waste and fossil fuel emissions are focused in population centres along the eastern coast (Ministry of Foreign Affairs et al.,

2019). Biomass burning occurs along the ‘arc of deforestation’ along the southern edge of the Amazon rain forest during and

after the dry season (Jul-Oct). This is in contrast to Amazon wetland emissions which peak during and after the wet season

(Dec-Mar).
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Current top-down estimates of CH4 emissions from Brazil, the Amazon and tropical South America vary depending on50

the method, source of data and area considered. Across South America’s Amazon basin, total emission estimates derived from

aircraft measurements for 2010–2013 are between 31–43Tgyr−1 (Wilson et al., 2016; Pangala et al., 2017). A recent study that

used regional inversions with satellite data by Janardanan et al. (2019) found Brazil’s emissions, on average, to be 56.2Tgyr−1

from 2011–2017. Many previous studies have estimated emissions globally using satellite data (e.g., Bergamaschi et al. 2009;

Feng et al. 2017). In the synthesis of Saunois et al. (2016), across the Tropical South America region, wetland emission55

estimates derived using different datasets and top-down methods span the large range of 23–64Tgyr−1. The wide range of

estimates indicate that large uncertainties exist and these uncertainties are exacerbated when estimating emissions over smaller

scales such as the Amazon basin or when quantifying individual sources.

Through use of a high-resolution regional inversion framework coupled with satellite measurements of CH4, we inferred

spatial and temporal distributions of Brazil’s CH4 emissions from 2010–2018. The regional inversion approach provides the60

benefit that uncertainties in the hydroxyl radical CH4 sink (Rigby et al., 2017; Turner et al., 2017; Nguyen et al., 2020), a

limitation in global approaches, can be neglected. Owing to a spatial and temporal difference in Brazil’s major CH4 sources,

these emissions are further partitioned into source sectors (Section 3.1) and are also presented for different wetland regions

(Section 3.2). We demonstrate the importance of the inversion setup when using satellite data to estimate country and basin-

scale emissions. Independent validation using in-situ data is shown in Section 3.3 and sensitivity studies, testing a range of65

different input factors, are discussed in Section 3.4.

2 Methods

2.1 CH4 measurements

We used data from three sources: (1) University of Leicester v7.2 total column CH4 product from the Thermal And Near-

infrared Sensor for carbon Observation Fourier Transform Spectrometer (TANSO-FTS) instrument on board the Greenhouse70

gases Observing SATellite (GOSAT) from April 2010 - Nov 2018, (2) surface data from Ragged Point, Barbados (RPB,

+13.17◦N, −59.43◦E), and (3) surface data from the Amazon Tall Tower Observatory (ATTO, −2.15◦N, −59.01◦E) for

external validation of the inversion. Figure 1 shows the positions of GOSAT points for a one year period and the locations of

the two surface stations.

Dry-air column-averaged CH4 mole fractions (XCH4) were derived using the CO2 proxy method, which multiplies the75

XCH4/XCO2 ratio by a model XCO2 field (Parker et al., 2011, 2015). The model XCO2 is based on the median of three

global models which all assimilated surface site measurement data: GEOS-Chem (Feng et al., 2011), Carbon Tracker (Peters

et al., 2007) and LMDZ (MACC/CAMS) (Chevallier et al., 2010). This GOSAT product was previously compared to aircraft

measurements over the Amazon basin by extrapolating the aircraft profiles through the troposphere and using a stratospheric

model, and showed differences that ranged from −1.9–9.7nmolmol−1 (Webb et al., 2016).80

We used Level 2 GOSAT measurements that were taken in nadir mode within an area that extended from −35.8 to 7.3◦N

and −76.0 to −32.8◦E and that passed the quality threshold. We only used nadir measurements to minimise the effect of any
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Figure 1. GOSAT measurements grouped into February-April (FMA), May-July (MJJ), August-October (ASO) and November-January

(NDJ). Measurements are shown here for the 02/2014–01/2015 period and averaged in 1◦ bins for clarity. FMA and ASO are representative

of the wet and dry seasons over the Amazon, respectively. Positions for the ATTO and RPB sites are also shown. The Brazilian border is

highlighted in blue.

unquantified biases between nadir and glint mode. In addition, we filtered data where the surface pressure deviated from the

retrieval grid by enough to reduce the number of retrieval levels to less than 20. The remaining data points were averaged

across a 0.23× 0.35◦ grid to match the lowest resolution of the atmospheric transport model grid cell (see section 2.3) across85

the 2010–2018 time period leaving ∼ 1300 data points on average per month.

Data from RPB were used alongside the satellite measurements in the inversion to provide additional constraints on the

boundary conditions. RPB is part of the Advanced Global Atmospheric Gases Experiment (AGAGE) network (Prinn et al.,

2018) and predominantly measures well-mixed background air. Measurements up to 2017 were made using GC-FID (Gas

Chromatography Flame - Ionization Detector) and beyond this with a CRDS (Cavity Ring-down Spectrometer) instrument. All90

data were averaged into hourly samples.

Measurements from ATTO (Andreae et al., 2015; Botía B. et al., 2019) were used for external validation of the inversion

results. ATTO is located near Manaus within the Amazon rainforest. The position and predominant north-easterly wind direc-

tion means that this site is particularly sensitive to CH4 emitted from wetlands but may also receive air masses from regions

of biomass burning and other human activity (Andreae et al., 2015; Pöhlker et al., 2019). CH4 mole fractions from 2014–201895

derived from CRDS instrumentation have been used in this study. Hourly mean measurements from the highest inlet on the

tower, at 79m, were used as they are assumed to be the most representative of regional air masses.
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2.2 Atmospheric Transport Model

To provide the relationship between atmospheric mole fractions at a receptor and a surface emissions field, we used the

high-resolution Lagrangian atmospheric transport model NAME (Numerical Atmospheric dispersion Modelling Environment)100

(Jones et al., 2007). Model particles were released for each GOSAT and surface measurement time and location and tracked

backward in time for 30 days. The model tracked the interaction of these particles with the surface (defined as 0–40m above

modelled ground level) to quantify the sensitivity to regional emissions. The times and locations that particles left the model

domain was recorded to quantify the sensitivity to boundary conditions. NAME was driven by meteorological inputs from the

Unified Model (UM) spanning resolutions between 0.23 to 0.09◦ latitude and 0.35 to 0.14◦ longitude over the 2010–2018105

period. The annual mean sensitivity to GOSAT measurements used in this study are shown in Appendix Fig. A1.

Satellite measurements require footprints of the total atmospheric column and model particles were released at multiple

heights based on the pressure levels defined within the GOSAT product (see Ganesan et al. 2017 for a description of how

NAME was used to simulate XCH4 by applying averaging kernels, pressure weights and a priori information for satellite

data). The main modification in the NAME setup from Ganesan et al. (2017) made here is that surface pressure in GOSAT was110

corrected to match the surface pressure from the UM. Occasionally, the corrected surface pressure level was lower than the

first model level, and in these cases, the retrievals were discarded. This ensured consistency between the model defining the

GOSAT pressure levels and NAME.

2.3 Inversion method

Top-down emissions estimates were inferred using a hierarchical Bayesian inversion method with reversible jump, trans-115

dimensional Markov chain Monte Carlo (MCMC). A full description of the method can be found in Ganesan et al. (2014) and

Lunt et al. (2016). The hierarchical component employs a set of hyperparameters that define the model-measurement and prior

emissions uncertainties, and which were explored as part of the inversion. Inclusion of these additional model parameters allows

for uncertainties in the system to be more accurately captured. The trans-dimensional component of the inversion allowed for

the spatial inversion grid to be estimated as part of the inversion, rather than being defined a priori.120

The a priori inputs to the inversion are described in Section 2.4. The emissions PDF was defined as lognormal to prevent

non-physical negative solutions from being reached. The standard deviation of this PDF was allowed to vary between 0.05 and

20.0 (with a value of one being equivalent to the prior emissions magnitude). The model-measurement uncertainty was defined

with a uniform distribution ranging from 0.2 to 200nmolmol−1.

Each month, we estimated emissions from within the NAME domain (at the resolution explored by the trans-dimensional125

method), as well as offsets to a priori boundary condition "curtains" on each edge of the domain (Section 2.4). In addition, an

offset parameter was included to account for any differences between the satellite and the calibrated ground-based measure-

ments and their representation by models. The necessity of this parameter to produce the most robust results is discussed in

Section 3.3.
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Table 1. Summary of a priori emissions and boundary conditions used in this study. All maps have been re-gridded to 0.23◦ latitude by

0.35◦ longitude resolution. * Repeats this year thereafter. † For 2018, a climatological mean of 2011–2017 period was used.

Field Source Resolution Time Period Modifications

Anthropogenic emissions EDGAR v4.3.2 Annual 2010–2012∗ Excluded agricultural waste burning

and combustion from manufacturing,

solid waste and fossil fuels.

Wetland emissions JULES / SWAMPS Monthly 2010–2017∗ Emissions from JULES over fractional

wetland extent from SWAMPS. Total

wetland emissions scaled to 44Tgyr−1

Biomass burning emissions GFED v4.1 Monthly 2010–2015∗ None

CH4 mole fraction curtains CAMS v17r1 Monthly 2010-2017† None

The Metropolis-Hastings MCMC sampler was run with 500,000 iterations with the initial 100,000 samples discarded as130

burn-in. Every 500th iteration was saved and used to build posterior PDFs for each parameter. The mean and 2.5–97.5 per-

centiles were used to produce posterior estimates and 95% confidence intervals.

2.4 A priori fields

A priori emissions and boundary condition fields are summarised in Table 1. Emissions were inferred for the three major source

sectors in Brazil: anthropogenic, biomass burning and wetlands. Maps for two representative months in the wet (January) and135

dry (September) seasons for 2014 are shown for each sector in Fig. 2.

Anthropogenic emissions, excluding biomass burning, were from the EDGAR (Emission Database for Global Atmospheric

Research) v4.3.2 database (Janssens-Maenhout et al., 2017). Annual emissions were available up to 2012 and then assumed to

be equal to the 2012 emissions thereafter. The biomass burning contribution was from GFED (Global Fire Emissions Database)

v4.1 (Van Der Werf et al., 2017) at monthly resolution to the year 2015 and assumed to be held at 2015 values thereafter.140

Wetland emissions were based on the output from the JULES land surface model (Clark et al., 2011) which was modified to

use the wetland fractional map from Surface WAter Microwave Product Series (SWAMPS). We used a version of SWAMPS

that was updated from Schroeder et al. (2015) to include wetlands occurring under dense canopies, to remove rice agriculture

and to include any inland water. Wetland emissions across South America were scaled to 44Tgyr−1 based on the mean

bottom-up estimate for Tropical South America from Saunois et al. (2016).145

A priori mole fractions at the boundaries of the domain were derived from the CAMS CH4 flux inversion product v17r1

(accessible at https://apps.ecmwf.int/datasets/data/cams-ghg-inversions/). This version assimilated the global surface measure-

ment network and did not use satellite data. This product was only available up to 2017, so to extend the analysis to 2018, the

climatological mean of the 2010–2017 period was used.
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(a)

Jan
2014

Wetlands

0.0 0.3 0.6 0.9 1.2
mol m 2 s 1 1e 8

(d)

Sep
2014

(b) Anthropogenic

0.0 0.3 0.6 0.9 1.2
mol m 2 s 1 1e 8

(e)

(c) Biomass Burning

0.0 0.3 0.6 0.9 1.2
mol m 2 s 1 1e 8

(f)

Figure 2. A priori emissions for wetlands, anthropogenic and biomass burning sectors for January and September, 2014. These months

are representative of peak wetland extent in the wet season (January) and biomass burning activity (September). Note that the EDGAR

anthropogenic inventory is annual resolution and is shown here for 2012.

2.5 Sector attribution150

The total emissions estimated from the inversion were partitioned into each of the three major source sectors using the fraction

of each source in the a priori emission fields in each grid cell. Due to the largely distinct spatial or temporal distributions of

the sectors as shown in Fig. 3, the fractional map of each source is not overly dependent on the inventories used. The influence

of the a priori distributions on the robustness of the sector partitioning is discussed in Section 3.4.

2.6 Validation with ATTO155

To provide a validation of the inversion results, we compared a model prediction of mole fractions at ATTO derived from hourly

NAME sensitivities convolved with our posterior emissions maps and boundary conditions against measured values. Four tests
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Fraction

Figure 3. Fraction of wetland, anthropogenic and biomass burning emissions for January (top panel) and September (bottom panel) 2014

derived from the a priori emissions. Note that the EDGAR anthropogenic inventory is annual resolution and is shown here for 2012.

were run using different configurations of the inversion. The first three estimates were from inversions that used variants of the

GOSAT and RPB dataset. The first inversion utilised GOSAT data alone. The second inversion used both GOSAT and RPB

measurements but did not include an offset parameter between satellite and surface data in the inversion. The third inversion160

used GOSAT and RPB measurements and included an offset parameter that was estimated in the inversion (our main results).

These tests and the resulting comparisons with ATTO data allowed us to determine the factors that are most important when

using satellite data to constrain country-scale emissions. We performed a final test which scaled our posterior emissions map so

that emissions from the Brazilian Amazon matched those derived by Wilson et al. (2016) using four aircraft sites. For the whole

Amazon Basin, the lowest value in the range presented in Wilson et al. (2016) of 31.6Tgyr−1 was used, with ∼ 19Tgyr−1165

coming from the Brazilian Amazon, based on wetland extent. This test allowed us to investigate the fit of previous results

against ATTO data.
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In addition to these experiments, we simulated the model prediction at ATTO using a second regional Lagrangian model,

the FLEXible PARTicle dispersion model (FLEXPART), for 2014–2017 (Pisso et al., 2019). The setup for FLEXPART was

the same as NAME, except the surface was defined as 0–50m above ground level and the meteorological drivers were 1◦170

resolution from the European Centre for Medium-Range Weather Forecasts (ECMWF). Particles were tracked backwards for

30 days. This test allowed us to assess whether results are significantly impacted by systematic uncertainties in NAME.

2.7 Sensitivity Studies

Sensitivity tests against a range of inputs to the inversion were performed to assess the robustness of our results. Three cate-

gories of inputs were tested: a priori emissions, a priori boundary conditions and the model XCO2 fields used to derive XCH4.175

In most cases, comparisons were performed for 2014 only, but if differences were seen, the analysis was expanded across the

entire time range of 2010–2018. The sensitivity study details are summarised in Table 2.

To test the sensitivity to a priori emissions, we ran a set of inversions where emissions were perturbed one at a time from

each source sector. We changed the magnitudes of emissions from each sector and tested variations of wetland extent maps. For

the latter, three additional wetland distributions were used: two using JULES emissions either with Bergamaschi et al. (2007)180

(hereafter referred to as Kaplan, which is based on land cover maps from optical imagery) or the high-resolution Tropical and

Sub-Tropical Wetland Distribution v2.0 (Gumbricht et al. 2017, hereafter referred to as Gumbricht). The final variation used

the Wetland CH4 emission and uncertainty dataset for atmospheric chemistry and transport modelling (WetCHARTs) based on

an ensemble of wetland models (Bloom et al., 2017). We did not modify these wetland distributions to include any emissions

that might occur when the water table is below the surface. These four wetland distribution maps are shown in Appendix Fig.185

A2.

To test the sensitivity to a priori boundary conditions, we used a variation of the global mole fractions used to generate

the boundary condition curtains. We used the climatological mean of the MOZART global model (Emmons et al., 2010) over

2010–2014 time period. The setup for MOZART is described in Palmer et al. (2018).

To test the sensitivity to the model XCO2 used to derive XCH4, we generated 10 variations of XCH4 for each measurement.190

These were created by randomly selecting between the median (the main results) and the extremes in the ensemble members

that are included with the data product. We re-ran the inversion for each of the ten datasets for the full 2010–2018 time period,

which allowed us to investigate random errors in XCO2.

3 Results

3.1 Annual and seasonal emissions by sector195

Mean emissions from 2010–2018 for Brazil are 33.6±3.6Tgyr−1 (Fig. 4). These emissions correspond to mean anthropogenic

emissions of 19.0± 2.6Tgyr−1, mean wetland emissions of 13.0± 1.9Tgyr−1, and mean biomass burning emissions of

9
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Table 2. Sensitivity studies performed in this study for a priori fields or for model XCO2. For the a priori emissions, each sector was varied

one at a time over the full South America domain with other sectors kept in their original configurations.

† Based on bottom-up emissions estimates from Saunois et al. (2016) for tropical South America.

Experiment category Experiment name Description

Wetland distribution Kaplan JULES emissions and wetland extent from Bergamaschi et al.

(2007). Wetlands emissions scaled to 44Tgyr−1.

Gumbricht JULES emissions and wetland extent from Gumbricht et al. (2017).

Wetlands emissions scaled to 44Tgyr−1.

WetCHARTs Wetland CH4 emissions from WetCHARTs v1.0 (mean of extended

model ensemble) (Bloom et al., 2017).

Wetland magnitude Saunois high Wetlands emissions (JULES emissions and SWAMPS extent)

scaled to 34Tgyr−1 †.

Saunois low Wetlands emissions (JULES emissions and SWAMPS extent)

scaled to 50Tgyr−1 †.

Anthropogenic magnitude EDGAR x 2.0 Anthropogenic emissions (EDGAR v4.3.2) doubled to

77.5Tgyr−1.

Biomass burning magnitude GFED x 2.0 Monthly biomass burning emissions (GFED v4.1) doubled

(monthly max. 20.9Tgyr−1).

Boundary conditions MOZART Climatological mean of MOZART model (Emmons et al., 2010;

Palmer et al., 2018).

XCO2 variations XCH4 samples 10 XCH4 datasets created by randomly selecting across the me-

dian and the extremes for the XCO2 model ensemble, compiled of

GEOS-Chem, CarbonTracker and LMDZ (MACC/CAMS).
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1.7± 0.3Tgyr−1. Maps of these posterior emissions and the difference from the a priori inputs are shown for each season in

Appendix Fig. A3.

Both our 2012 and 2015 estimates of anthropogenic emissions of 16.2± 3.0Tgyr−1 and 18.3± 2.5Tgyr−1 are consistent200

within uncertainties with Brazil’s Third Biennial Update Report to the UNFCCC, which estimates 15.6Tgyr−1 in 2012 and

16.3± 3.8Tgyr−1 in 2015 (Ministry of Foreign Affairs et al., 2019), when LULUCF contributions are removed.

The overall rise in emissions over the 2010–2018 period generally occurred in late 2013 and early 2014 and was sus-

tained thereafter. Average emissions between 2014–2018 rose over 2011–2013 levels by 6.9± 5.3Tgyr−1 and this is driven

by changes in anthropogenic, wetland, and biomass burning emissions of 3.3± 3.7Tgyr−1, 2.6± 2.8Tgyr−1, and 1.0±205

0.4Tgyr−1, respectively.

Across 2010–2018, we find that total emissions maximise in April and minimise in October, and the overall seasonality

reflects the net effect of different seasonal patterns in the three sectors. Anthropogenic emissions, the largest sector, peak in

April and are lowest in August - October (dry season), and could be a result of seasonality in cattle, manure management

(e.g. Cardoso et al. 2019) or landfill emissions (e.g. Machado et al. 2009; Imbiriba et al. 2020). Anthropogenic emissions are210

only estimated annually in EDGAR and in reports to the UNFCCC, and thus do not capture this important feature. Wetland

emissions peak during the wet season between February and April and are lowest in October and this seasonality is more

pronounced in our estimates than in the a priori emissions. Anthropogenic and wetland emissions are discussed further for

different regions of Brazil in Section 3.2. Biomass burning emissions maximise in September and the seasonality is consistent

with GFED.215

Our analysis shows that individual years exhibit features that are not present in the bottom-up estimates. We find the largest

biomass burning emissions in 2010, a year with strong drought and intensive burning due to high Atlantic sea surface temper-

atures (Lewis et al., 2011; van der Laan-Luijkx et al., 2015); annual mean emissions in 2010 were 5.5± 0.5Tgyr−1 (based on

Apr-Dec due to availability of GOSAT measurements in 2010), but with a monthly value in September at 22.3+2.6
−2.7 Tgyr−1, a

value that is is 6.3Tgyr−1 larger than reflected in GFED. Our estimates are consistent with GFED at most other times. Wetland220

emissions are highest in 2015, which corresponds to a strong El Niño year. The a priori model emissions do not capture the

increase in 2015 but do simulate a decrease from 2016. This feature is discussed further in Section 3.2.

The performance of the inversion is demonstrated through a comparison of modelled mole fractions derived from the poste-

rior emissions and boundary conditions with the measurements used in inversion. We show this fit for both GOSAT and RPB

in Appendix Fig. A4 and we find both data sets to be represented well by the inversion.225

3.2 Sub-national emissions

In addition to the Brazilian totals presented above, we aggregated our posterior emissions for the major regions of Brazil: the

Amazon basin, the Pantanal and the remainder of the country (Figs. 5 and 6 for wetland and anthropogenic sectors, respec-

tively). The Amazon basin was defined using the TRANSCOM definition for Tropical South America (Saunois et al., 2016)

and the Pantanal region was defined using the TRIP River Routing Model output (Oki et al., 1999). These regions were further230
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Figure 4. Brazil’s CH4 emissions derived from GOSAT and RPB measurements between 2010 and 2018. Total emissions (grey) are split

into the three major sectors: wetlands (cyan), anthropogenic (yellow) and biomass burning (red). Prior and posterior emissions are dashed

and solid lines, respectively. Shading indicates the 95% confidence interval. (a) Monthly emissions, (b) monthly emissions smoothed with

a 12-month rolling mean and (c) monthly means across the 2010 to 2018 period. Errors in mean values assume a 50% correlation between

individual months.
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Figure 5. Brazil’s wetland emissions aggregated over Amazon and Pantanal regions. (a) Monthly emissions with an inset map showing the

masks used to delineate between the Amazon and Pantanal regions, (b) monthly emissions smoothed with a 12-month rolling mean and (c)

seasonal means across the 2010 to 2018 period. Errors for mean values assume a 50% correlation between individual months.

masked to only include the area within Brazil using the public domain Natural Earth database (https://www.naturalearthdata.

com/).

We aggregated wetland emissions (Fig. 5) into mean values for the 2010–2018 period, changes between 2011–2013 and

2014–2018, and means for each month. Mean wetland emissions from the Brazilian Amazon and Pantanal regions across the
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2010–2018 period are 9.2± 1.8Tgyr−1 and 1.9± 0.5Tgyr−1, respectively. Wetland emissions in the Amazon and Pantanal235

comprise 65% and 26% of total emissions, respectively, with emissions from the Pantanal being dominated by the anthro-

pogenic sector. While emissions from the Pantanal are not significantly different from the a priori emissions, these results are

found to be robust in our sensitivity studies as discussed in Section 3.4. There is only a small change in wetland emissions over

the two regions between 2011–2013 and 2014–2018. Differences are 1.5±2.6Tgyr−1 and 1.0±0.7Tgyr−1, for the Amazon

and Pantanal, respectively. Only the small Pantanal change is significant within the 95% confidence interval. We also find that240

there is an offset in peak emissions between the Amazon and the Pantanal regions. Amazon wetland emissions peak around

February-March whereas the Pantanal peaks in April. The seasonality for the Amazon is earlier than reflected in the a priori

emissions.

Because wetland emissions from the Pantanal exhibit a similar seasonal pattern to the seasonality in anthropogenic emissions

across Brazil, we analysed the regions that are responsible for driving the anthropogenic seasonal cycle. Figure 6 shows the245

anthropogenic emissions aggregated over the Amazon and Pantanal regions and over the remaining Brazilian territory. We

find that the seasonal cycle is dominated by the emissions outside of the Amazon and the Pantanal. Therefore, while Pantanal

wetland and anthropogenic emissions have the same seasonal pattern, this is not due to a mis-attribution between sectors based

on the current configuration of the wetland and anthropogenic prior emissions. However, it is important to note the difficulty

of wetland models in capturing the full seasonal cycle in the Pantanal due to overbank inundation, so there could be some250

uncertainty in the fractional partitioning due to uncertainty in the wetland models used in the main results and in the sensitivity

studies (Parker et al., 2018).

Wetland emissions are 3.9± 3.0Tgyr−1 larger in the 2015 wet season relative to 2011–2014, a feature that is not present

in the a priori emissions. We show in Fig. 7 that this increase is driven from the Amazon and not by Pantanal wetlands.

We investigated changes in some of the major environmental influences to understand what could drive this pattern. Figure 7255

shows our derived emission maps, changes in surface temperature from the WFDEI meteorological dataset (https://rda.ucar.

edu/datasets/ds314.2/) and changes in SWAMPS inundation for the wet season, defined as February–April (FMA). We show

differences between 2015 and 2011–2014 and between 2016 and 2015 for the Amazon and the Pantanal regions.

We find that the increase in 2015 originates mainly from the Western Amazon with a rise of 3.7±2.7Tgyr−1 (defined as the

Brazilian Amazon area west of −55◦E). This coincides with increased surface temperatures from this region. Wetland extent260

did not significantly change in the Western Amazon between 2015 and preceding years. Emissions then decrease after mid-

2015 to levels that are sustained from 2016–2018. We find that this decrease is correlated with both lower soil temperatures

and decreased inundation. The a priori emissions may be simulating the decrease after 2016 because the a priori emissions are

constrained to the observational inundation fields. However, these results suggest that there may be uncertainties in the wetland

model temperature sensitivity.265
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Figure 6. Brazil’s anthropogenic emissions aggregated over the Amazon basin, Pantanal region and the rest of Brazilian territory. (a) Monthly

emissions with an inset map showing the masks used to delineate different regions, (b) monthly emissions smoothed with a 12-month rolling

mean and (c) seasonal means across the 2010 to 2018 period. Errors for mean values assume a 50% correlation between individual months.
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Figure 7. Differences during the wet season (FMA). (a-c) 2015 minus 2011–2014 average, and (d-e) 2016 minus 2015. (a,d) CH4 emissions,

(b,e) surface temperature from the WFDEI meteorological dataset, and (c,f) SWAMPS wetland fraction. All regions outside of the Brazilian

Amazon and Pantanal have been masked for clarity.

3.3 Validation against ground-based data

We used independent data from ATTO to assess the robustness of our inversion results and to understand what factors are

important for the inversion setup. The results of these tests can be seen in Fig. 8. Other datasets besides ATTO exist, such as

aircraft data from the Amazon (Wilson et al., 2016; Pangala et al., 2017), but were not available for use.

An inversion using only GOSAT data produced a mean difference between modelled ATTO data and measurements of270

42.5nmolmol−1 (Figures 8a and 8e). This difference can largely be attributed to modelled boundary conditions that are

consistently elevated throughout the year above the lowest ATTO data. Introduction of the surface baseline station of RPB

(Figures 8b and 8f) improved the boundary condition estimation, with the modelled boundary conditions now consistent with

ATTO data in most months and lower than ATTO data in months with significant regional emissions (i.e. times when ATTO may

not be representative of boundary conditions). Despite consistency with boundary conditions, this setup produced the highest275

mean difference with ATTO, 67.4nmolmol−1, due to large regional emissions being estimated. The third case, the setup of

our main results, which allowed for an offset between the GOSAT and RPB measurements to be estimated in the inversion,

resulted in the best fit to ATTO (Figures 8c and 8g). The model achieved consistent boundary conditions and the smallest mean

difference with ATTO (18.9nmolmol−1). In our inversions from 2010–2018, we estimate a mean offset parameter between

16

https://doi.org/10.5194/acp-2020-438
Preprint. Discussion started: 16 June 2020
c© Author(s) 2020. CC BY 4.0 License.



GOSAT and RPB data of 22± 8nmolmol−1. The numbers presented for the offsets are a combination of any bias between280

the data themselves, but also in the model’s interpretation of these data sets. The model simulates the three-dimensional

atmospheric fields necessary to combine these two datasets together. However, the interpretation of these tests show that

near-surface data that help to constrain boundary conditions are required because GOSAT data alone does not have enough

resolving power to partition boundary conditions and emissions. An offset parameter should then be included to account for a

combination of any differences between in-situ data and satellite data and any offsets due to the atmospheric model.285

When our posterior emissions estimates were scaled to match previous results derived by Wilson et al. 2016 (but keeping the

posterior boundary conditions fixed from our main results), a larger offset from ATTO of 45.4nmolmol−1 (Figures 8d and 8h)

again resulted. This test indicates that larger emissions from the Amazon are inconsistent with ATTO and its representation by

the NAME model.

To assess the possibility of large systematic uncertainties in NAME, we show a comparison of the validation at ATTO290

generated using NAME (as in Figure 8c) with those generated using FLEXPART. This comparison is shown in Appendix Fig.

A5 and shows that the posterior emissions and boundary conditions derived here are consistent with ATTO across both models.

These results provide additional confidence in the magnitude of emissions that we derive.

3.4 Sensitivity studies

3.4.1 Sensitivity to a priori emissions295

Sensitivity tests to the effect of different wetland distributions are shown in Fig. 9. Total emissions do not change significantly

between these sensitivity tests, despite the large seasonal cycle in the a priori WetCHARTS emissions that is not reflected in the

other wetland distributions. This suggests that the inversion is well-constrained by the atmospheric data and is not significantly

influenced by the prior. There are small differences in wetland and anthropogenic partitioning, but emissions are consistent

within uncertainties.300

In addition to different a priori wetland distributions, sensitivity tests to perturb a priori emissions from each source sector

are shown in Appendix Figures A6, A7 and A8. The main impact of perturbing a priori emissions from any source sector

comes in the partitioning of total emissions into the sources, particularly between anthropogenic and wetland emissions. This

is due to a small overlap between anthropogenic and wetland sources (Figures 2 and 3). However, the trade-off between these

two sectors is smaller than the initial perturbation to the prior and emissions are still consistent within confidence intervals,305

suggesting that the sectoral partitioning is robust. The largest sensitivity to the a priori emissions is shown when doubling

a priori biomass burning emissions (Fig. A8) and the resulting posterior biomass burning estimate is not consistent within

uncertainties to the unperturbed case. Overall, these tests show that our results and the associated sectoral partitioning, with

the exception of some influence from the biomass burning prior, are robust to the a priori emissions used.
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Figure 8. (a-d) Comparison of modelled and measured mole fractions at ATTO for different posterior emissions with (e-h) histograms of the

differences. Posterior emissions derived in inversions using (a,e) GOSAT measurements only, (b,f) both GOSAT and RPB data but no offset

parameter in the inversion, and (c,g) both GOSAT and RPB data and with an offset parameter between the two data sets in the inversion .

(d,h) Posterior emission distribution of our main results but scaled so that total CH4 emissions in the Brazilian Amazon was equivalent to

those derived in Wilson et al. (2016).
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Figure 9. Brazil’s CH4 emissions in a sensitivity inversion using perturbed a priori wetland distributions. All other components were held at

the original configuration. Total emissions for all of South America were scaled to 44Tgyr−1 for all distributions apart from WetCHARTs,

which used its derived emissions. (a) Total, (b) wetland, (c), anthropogenic, and (d) biomass burning emissions. Prior emissions are only

shown in (a, b) as they only vary for these components in this test.

3.4.2 Influence of a priori boundary conditions310

Results of using a different global model of a priori boundary conditions are shown in Appendix Fig. A9. Due to differences

in the seasonal cycle when comparing the CAMS and MOZART boundary conditions in 2014, this analysis was run for the

full 2010–2018 period to provide a longer comparison. While there is some month to month variability, the overall patterns

are consistent between the two inversion setups, suggesting that the inversion is robust to the a priori boundary conditions.

As demonstrated in Section 3.3, it is important to include data that can help the inversion constrain the boundary conditions,315

through, for example, surface measurements from remote background stations.
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3.4.3 Influence of model XCO2 on XCH4

We generated ten variations of the XCH4 dataset used in the inversion based on different model XCO2. Figure 10 shows the

emissions estimates that result when perturbing XCH4 by random values of the model XCO2 used to generate XCH4 using the

CO2 proxy method. Because of some differences in 2014, this analysis was run for the full 2010–2018 period.320

Across the ten variations, mean emissions over 2010–2018 range from 33.8–34.8Tgyr−1 in total, 19.0–19.4Tgyr−1 for

anthropogenic, 13.0–13.4Tgyr−1 for wetlands and 1.7–1.8Tgyr−1 for biomass burning. Individual months can exhibit larger

ranges in the ten variants, in some cases spanning > 10Tgyr−1. The differences based on model XCO2 does not exhibit any

particular seasonality. The change between the 2011–2013 and 2014–2018 periods across these ten inversions produces a range

of 5.9–7.0Tgyr−1. Thus, the increase in emissions is robust to uncertainties in XCO2.325
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Figure 10. Brazil’s CH4 emissions in a sensitivity inversion using ten variants of GOSAT data generated with different model XCO2. All other

components were held at the original configuration. Each line represents a different inversion run. (a) Total, (b) wetland, (c), anthropogenic,

and (d) biomass burning emissions. Prior emissions do not vary in this test.
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4 Discussion

We find that Brazil’s emissions increased during 2014–2018 over 2011–2013 levels by 6.9± 5.3Tgyr−1 and this coincides

with a large increase in global CH4 mole fraction growth rate in 2014 (Nisbet et al., 2019). The increase in Brazil’s emissions

is primarily driven by anthropogenic and wetland sources. Brazil’s anthropogenic emissions are dominated by agriculture and

mainly cattle, which is likely to be the main source for the inferred anthropogenic change. However, we did not have sufficient330

information with which to robustly separate total anthropogenic emissions into individual sub-sectors. Future work should

couple measurements of δ13C-CH4 from Brazil along with campaigns to sample representative isotopic source signatures

(Ganesan et al., 2018) to better understand whether changes in these sources are consistent with isotopic constraints.

The increased wetland emissions that we derive in the wet season of 2015 primarily originates from the Western Amazon.

Previous studies have found that changes in wetland CH4 emissions exhibit complex dynamics during El Niño years. Zhang335

et al. (2018) found through model simulations that the 2015–2016 El Niño led to larger instantaneous growth in CH4 emissions

than previous El Niño periods. This study also showed that there was a large increase in the Western Amazon due to increased

soil respiration from high soil temperatures, despite a decline in wetland extent due to drought. This pattern is consistent with

the results that we have derived from atmospheric data rather than from model simulations. In contrast to Zhang et al. (2018),

which also found a 2015–2016 El Niño effect on Western Amazon emissions, we find that emissions increased during the 2015340

wet season rather than the 2016 wet season. We instead show a decline in 2016 emissions, surface temperature and wetland

extent compared to 2015 levels. This discrepancy in temporal response from Zhang et al. (2018), suggests that the dynamics

of the wetland response to climatic perturbations may require further investigation.

Our results show that emissions can be derived for a country of the size of Brazil from satellite data coupled with high-

resolution atmospheric transport modelling but careful consideration needs to be paid to the setup of the inversion. Regional345

inversions use atmospheric data to estimate boundary conditions and regional emissions. Due to the lower signal-to-noise of

GOSAT data (which are sensitive to surface emissions that are mixed through the entire atmospheric column) compared to

ground-based data (although the reduced surface sensitivity and precision of satellite data needs to be weighed against the

greater geographical coverage), we find that additional surface data is required to better constrain the boundary conditions.

However, we find that when combining satellite data with calibrated surface data in an inversion it is critical to incorporate an350

offset parameter between the two datasets in the inversion. GOSAT data have been previously corrected by 7.7nmolmol−1

as a global average offset to independent ground based measurements from the Total Carbon Column Observing Network

(TCCON) (Wunch et al., 2011), but large regional variations can exist from the global mean offset (Dils et al., 2014). This

offset can be due to the data themselves as well as any offsets in the NAME model’s simulation of the two datasets.

Janardanan et al. (2019) estimated Brazil’s CH4 emissions using a regional inversion method from 2011-2017 using GOSAT355

and surface data and find total emissions to be 56.2Tgyr−1 compared with 33.3±3.7Tgyr−1 derived in this study. The differ-

ence between our results can be attributed to the natural wetland emissions estimates for which Janardanan et al. (2019) derive

39.8±12.4Tgyr−1 compared to 13.1±1.9Tgyr−1 presented here. Anthropogenic estimates (excluding biomass burning) are

similar at 16.5Tgyr−1 compared with our estimate of 18.8±2.6Tgyr−1. We propose that the main reason for the discrepancy
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in our estimates stems from Janardanan et al. (2019) not including an offset parameter in their inversion. In the case where we360

similarly set up our inversion to not include an offset parameter (as shown by the ATTO comparison in Fig. 8b), we also derive

larger total emissions of 51.7±3.5Tgyr−1 for 2014. However, not allowing for this offset produces the poorest comparison to

the independent ATTO measurements. However, it is important to note that our validation is based on only one site because of

the availability of data.

Studies deriving Amazon Basin CH4 emissions using aircraft data from within the Amazon are also higher than than our365

estimates at 49Tg (yr−1, Miller et al. 2007; Wilson et al. 2016). However, these higher estimates, as shown in Fig. 8d,

when simulated with NAME, are inconsistent when compared with CH4 mole fractions measured at the ATTO tower. The

wetland results presented here are most consistent with the lower bound estimates from Saunois et al. (2016) which range from

23.4–63.7 within Tropical South America. As discussed in Section 3.4.1, neither varying the magnitude of the prior input for

wetlands nor the wetland extent map used, significantly altered our posterior estimates.370

We propose one reason for the difference from aircraft based estimates could be that the studies using aircraft data may

not be able to constrain emissions over the whole of the Amazon Basin and furthermore, at the country-scale, though our

comparison at present has only been validated by one in situ measurement station. Future work should perform a detailed

comparison between aircraft-derived estimates and those derived from satellites, investigating the inversion setup and the

degree of constraint by the datasets. The main benefit of using satellite data is in its widespread coverage, which allows for375

country-scale emissions to be derived (albeit, with inclusion of calibrated near-surface data in the inversion).

Overall, we derive lower emissions than previous studies. We show the validation of our results at ATTO using two models,

NAME and FLEXPART. The consistency between the two models in simulating the magnitude of mole fractions at ATTO

provides some confidence in the lower emissions we derive over previous studies. In future, performing a full set of inversion

results using a large range of models with different physical parameterisations could help to quantify the magnitude of any380

systematic uncertainties.

5 Conclusions

We estimated Brazil’s CH4 emissions from 2010–2018 using a combination of GOSAT satellite data and surface data from

Ragged Point, Barbados. Due to the spatial and temporal separation in the three main sources of Brazil’s emissions (anthro-

pogenic, wetland and biomass burning), we were able to derive emission estimates by sector.385

We find mean emissions from 2010–2018 to be 33.6±3.6Tgyr−1, corresponding to 19.0±2.6Tgyr−1 from anthropogenic,

13.0± 1.9Tgyr−1 from wetland and 1.7± 0.3Tgyr−1 from biomass burning. We find a rise of 6.9± 5.3Tgyr−1 occurring

between 2011–2013 and 2014–2018 periods. Both anthropogenic and wetland sources drive the increase in emissions over the

period. This rise in emissions occurred during a period of accelerated global CH4 growth, suggesting that Brazil’s CH4 sources

have a significant influence on changes in the atmosphere.390
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We find that wetland emissions from the Western Amazon increased by 3.7± 2.7Tgyr−1 in the 2015 wet season, at the

start of the 2015–2016 El Niño, and decreased subsequently from 2016. We show that the increase is likely to be driven by

increased surface temperatures and thus, respiration rates, rather than through changes in inundation.

Our study demonstrates that satellite data, with its enhanced coverage compared to surface data, can be used to infer country-

scale emissions. This is beneficial for independently comparing top-down estimates with national reports to the UNFCCC.395

However, we show that satellite data must be used in conjunction with calibrated surface data, which provide critical constraints

on boundary conditions in regional inversions. It is also necessary to account for any offsets between datasets which can result

from either biases between satellite data and surface data or from the atmospheric transport model used to simulate these

data. Otherwise the resulting emission estimates may be biased. Our sensitivity studies show that our emissions estimates are

insensitive to most inputs, but the largest differences are driven by uncertainties in the model XCO2 used to derive XCH4.400

Code and data availability. University of Leicester GOSAT Proxy XCH4 data can be accessed via the Copernicus Climate Data Store

or by contacting Rob Parker. RPB data can be accessed from https://data.ess-dive.lbl.gov/view/doi:10.3334/CDIAC/ATG.DB1001 and by

contacting Dickon Young. ATTO data can be accessed from https://www.attodata.org/ and by contacting Jošt Lavrič. The inversion code and

NAME footprints used in this study can be accessed by contacting Rachel Tunnicliffe and Anita Ganesan.

Appendix A405
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Figure A1. Annual mean NAME sensitivity map for GOSAT measurements in nadir mode within the area −35.8 to 7.3◦N and −76.0 to

−32.8◦E over Brazil, for 2014.
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Figure A2. CH4 emissions for each of the four a priori wetland emissions used in the wetland extent sensitivity study. Panels (a)-(c)

SWAMPS, Kaplan and Gumbricht fractional maps are combined with the JULES emissions output. Details of these inversion setups are

described in Table 2. This is shown for April, 2014 which is a wet season month with high emissions in the Amazon basin and the Pantanal

region.
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Figure A3. Emissions maps across 2011–2018 time period grouped into February-April (FMA), May-July (MJJ), August-October (ASO)

and November-January (NDJ). Panels (a)-(d) CH4 posterior emissions maps and (e)-(h) difference between the posterior and the a priori

emissions input.
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Figure A4. Modelled mole fractions derived from the posterior emissions estimate compared to measurements from (a) GOSAT and (b)

RPB. The orange line shows posterior boundary conditions and the blue line shows the total modelled mole fraction. Measurements are

displayed as red dots.
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Figure A5. Comparison of modelled and measured mole fractions at ATTO with the same posterior emissions and boundary conditions

convolved with sensitivity maps derived from two different models. (a) NAME model (main results) and (b) FLEXPART model where (c-d)

shows histograms of the difference. Posterior emissions were derived from our inversion setup using both GOSAT and RPB data with an

offset parameter between the two data sets allowed within the inversion.
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Figure A6. Brazil’s CH4 emissions in a sensitivity inversion using a perturbed a priori wetlands emissions magnitude. All other components

were held at the original configuration. A priori wetland emissions for all of South America were scaled to 32 (low), 44 (mean) or 50 (high)

Tgyr−1 (as defined for Tropical South America in Saunois et al. 2016). (a) Total, (b) wetland, (c), anthropogenic, and (d) biomass burning

emissions. Prior emissions are only shown in (a, b) as they only vary for these components in this test.
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Figure A7. Brazil’s CH4 emissions in a sensitivity inversion using perturbed a priori anthropogenic emissions. All other components were

held at the original configuration. Anthropogenic emissions for all of South America were doubled from EDGAR. (a) Total, (b) wetland, (c),

anthropogenic, and (d) biomass burning emissions. Prior emissions are only shown in (a, c) as they only vary for these components in this

test.
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Figure A8. Brazil’s CH4 emissions in a sensitivity inversion using perturbed a priori biomass burning emissions. All other components were

held at the original configuration. Biomass burning emissions for all of South America were doubled from GFED. (a) Total, (b) wetland, (c),

anthropogenic, and (d) biomass burning emissions. Prior emissions are only shown in (a, d) as they only vary for these components in this

test.
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Figure A9. Brazil’s CH4 emissions in a sensitivity inversion using perturbed a priori boundary conditions from the MOZART model. All

other components were held at the original configuration. (a) Total, (b) wetland, (c), anthropogenic, and (d) biomass burning emissions. A

priori emissions do not vary in this test.
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